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Abstract  
With the growth in social media, internet of things, and planetary-
scale sensing there is an unprecedented need to assimilate spatio-
temporally distributed multimedia streams into actionable 
information. Consequently the concepts like objects, scenes, and 
events, need to be extended to recognize situations (e.g. 
epidemics, traffic jams, seasons, flash mobs). This paper 
motivates and computationally grounds the problem of situation 
recognition. It describes a systematic approach for combining 
multimodal real-time big data into actionable situations. 
Specifically it presents a generic approach for modeling and 
recognizing situations. A set of generic building blocks and 
guidelines help the domain experts model their situations of 
interest. The created models can be tested, refined, and deployed 
into practice using a developed system (EventShop). Results of 
applying this approach to create multiple situation-aware 
applications by combining heterogeneous streams (e.g. Twitter, 
Google Insights, Satellite imagery, Census) are presented.   

Categories and Subject Descriptors 
H.5.1 [Multimedia Information Systems], D.3.3 [Information 
Systems]: World Wide Web – Social Networks  

Keywords 
Events, Situation, Situation Detection, Modeling, Situation 
Awareness, Social Networks, Sensor Networks 

1. INTRODUCTION 
We are living in an age of abundance [1]. Humanity is more 
connected than ever before. With the growth trends in social 
media, multimodal mobile sensing, and location driven sensing, 
increasingly larger parts of human life are getting digitized and 
becoming available in the Cloud for sense making.  

The fundamental problem of sense-making is that of making sense 
of the observed data. For multiple decades, researchers have been 
building approaches like entity resolution, object detection, and 
scene recognition, to understand different aspects of the observed 
world. Unlike the past though, now we do not need to undertake 
sense-making based on data coming from a single media element, 
modality, time-frame, or location of media capture. Real world 
phenomena are now being observed by multiple media streams, 
each complementing the other in terms of data characteristics, 
observed features, perspectives, and vantage points. Each of these 
multimedia streams can now be assumed to be available in real-
time and increasingly larger portion of these come inscribed with 
space and time semantics. The number of such media elements 
available (e.g. Tweets, Flickr posts, sensors updates) is already in 
the order of trillions [20], and computing resources required for 
analyzing them are easily available. We expect this trend to 
continue; and mobile devices to become the biggest producers 

and consumers of multimedia data. Hence sense-making from 
real-time multimodal location-aware data will be the ‘holy-grail’ 
of Computer Science problems for the coming decade.  

 
Figure 1: Different Types of Concepts can be detected in different 
data availability settings. Single media, such as images, results in 
concepts more in images than in the real world, but using 
different media it is possible to detect concepts in the real world  

 

The time is right now to channel the lessons learnt from detecting 
intra-media concepts (i.e. those which manifest themselves, and 
can be detected within a single media object e.g. a tree, or a chair 
in an image), to define and making quick progress on detecting 
evolving concepts (i.e. those which occur in real world, are 
constantly evolving, and inherently manifest themselves over 
heterogeneous multimedia streams from numerous sources).  As a 
simple example, we may now look beyond the problem of 
creating a tree detector and/or testing it over Millions of Flickr 
images; to that of using a stream of Billions of such images and 
other available data to detect seasonal patterns, plant disease 
spreads, deforestation trends, or global warming. These are the 
problems which could not be tackled earlier because of the lack of 
data and computational resources; but those are no longer the 
bottlenecks. 

As shown in Figure 1, Situation recognition builds on and 
extends object recognition, scene recognition, activity and event 
recognition, and complex event processing. Examples of relevant 
situations are all around us including beautiful-days/ hurricanes/ 
wildfires, traffic (jams / smooth/ normal), economic recessions/ 
booms, block-busters, droughts/ great-monsoons, seasons (early-
fall/ fall/ late-fall), demonstrations/ celebrations, social uprisings/ 
happiness-index, flash-mobs, flocking and so on. They vary 
across, and affect all aspects of human lives – health, natural 
disaster, traffic, economy, social reforms, and business decisions. 
Detecting situations in time to take appropriate actions for saving 
lives and resources can transform multiple aspects of human life.  

The challenges in Situation recognition would be fundamentally 
different from those in object or event recognition. In effect, this 
problem brings us back to the drawing boards as we establish the 
process of concept detection from very heterogeneous, very 
unstructured, real time, big data. For example, we can no longer 
just accept heterogeneity, or allow multiple data streams; we need 
to expect them and capitalize on them. We need to focus on 
recognition of real world phenomena based on their footprints 
across multiple heterogeneous media. This will allow us  to solve 
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practical human problems by correlating data ranging from social 
media, to sensor networks, and satellite data. Consider hurricane 
mitigation as an example. The data streams for hurricane status 
(e.g. NOAA.gov), weather forecast (weather.com), population 
demographics (census.gov), rescue shelters (redcross.org), and 
traffic directions (maps.google.com) are all freely available on the 
Web. But we still lack the computational frameworks to unify and 
process such heterogeneous streams to solve practical problems.  

Multimedia research community is particularly well positioned to 
take on the challenge of Situation Recognition. First, the 
community’s core competence lies in handling heterogeneous 
media (audio, video, text, phone logs, micro-blogs, sensors etc.). 
Equally importantly, it is the only research community which has 
studied concept detection across both time (event detection), and 
space (like spatial organization of pixels in images). The tools for 
raster image processing translate directly onto spatial data layouts 
and notions of neighborhood, regions, boundaries, and motion 
vectors translate seamlessly across to spatio-temporal analysis. 
We just need to change the perspective and focus on these notions 
in the real world rather than the media silos.  

Building the tools and techniques to handle the various challenges 
in defining new concepts, dealing with big data volume, and 
building cross-media processing tools require a long term 
community effort. This paper describes the first systematic 
attempt towards detecting situations in the context of large scale 
spatio-temporal multimedia streams. Correspondingly, the scope 
of this paper is to identify and illustrate a generic approach for 
modeling and recognizing situations. Specifically, we identify 3 
main problems essential for situation recognition: 

1) The concept of ‘situation’ is still ill defined; previous 
attempts ignored the role of big, real-time, heterogeneous, spatio-
temporal streams. 

2) There is a lack of conceptual tools to help users model their 
situations of interest, and  

3) No tools are available to rapidly implement these situation 
models, and reevaluate and refine as required.   

This paper describes an approach for tackling each of these 
challenges. After surveying different interpretations of situation, a 
computational definition for it is developed. Next, we describe a 
step by step approach to help domain experts in creating 
computational recognition models for different situations. We 
provide guidelines and support a design process to make sure that 
the models generated are explicit, actionable, and computable. A 
toolkit to rapidly implement and evaluate these situation 
recognition models helps building solutions. The modeling tool 
and the implementation are based on the use of space and time as 
the unifying axes for heterogeneous data, and spatio-temporal 
features as those important to application designers to differentiate 
between classes of spatio-temporal phenomena. The 
implementation of the recognition models is built upon 
transposing the spatio-temporal operators into raster image and 
video operations under the hood. Once refined until satisfactory 
levels of detection/ recognition are achieved, the detectors can be 
used to build situation based applications to generate appropriate 
information and personalized actions. 

We will discuss the use of the proposed approach across multiple 
applications dealing with diverse data streams.  

2. SITUATION: DEFINITION 
There has been a large amount of work done in the areas like 
ubiquitous/pervasive computing [9],  context-aware computing 

[31], mobile application software, aviation/air traffic control [4,  
6, 12], robotics, industrial control [11], military command and 
control [5], surveillance [22], linguistics [10], stock market 
databases [30], and multimedia analysis[23] on situation 
modeling, situation awareness, situation calculus, situation 
control, and situation semantics. The interpretation of situation 
however is different across different areas and even across 
different works within the same area.  

To highlight the common themes and illustrate the diversity in 
interpretations, we present some sample definitions here. 

• Endsley, 1988: “the perception of elements in the environment 
within a volume of time and space, the comprehension of their meaning, 
and the projection of their status in the near future”  

• Merriam-Webster dictionary: “relative position or combination of 
circumstances at a certain moment”  

• McCarthy, 1969: “A situation is a finite sequence of actions.” 

• Yau, 2006: “A situation is a set of contexts in the application over a 
period of time that affects future system behavior”  

• Dietrich, 2003: “…extensive information about the environment to 
be collected from all sensors independent of their interface technology. 
Data is transformed into abstract symbols. A combination of symbols 
leads to representation of current situations…which can be detected”  

Some common traits as well as the dissimilarities amongst 
different definitions are clear. Most telling perhaps is the 
observation by Jakobson et al that “…being a relatively new field, 
there is a clear lack of theoretic well-grounded common 
definitions, which may be useful across different domains.” [18].  

We decided to focus on the commonalities across definitions, and 
identified the following notions to reverberate across definitions: 

1) Goal based (GB): Situations need to be defined for an 
application or a purpose. 

2) Space and time (ST): Situations capture and represent a 
volume of space and/or time.  

3) Future actions (FA): Situations can be used for future 
prediction and/or action taking. 

4) Abstraction (AB): Situations signify some form of 
perception, or symbolic representation for higher 
understanding. 

Further while some definitions were computationally grounded 
(CG) in data (e.g. Endsley, Dietirch), others were abstract (e.g. 
Barwise, Merriam-Webster). Here, we summarize some of the 
definitions surveyed based on these axes: 

Work Goal 
Based 

Space 
Time 

Future 
Actions 

Abstr
action 
 

Computat
ionally 
Grounded 

[4] Endsley, 1988  X X X X 

[5] Moray, 2004  o  X  

[6] Adam, 1993 X  X   

[7] Jeannot, 2003 X     

[8] McCarthy, 1969   X   

[9] Yau, 2006 X  X  X 

[10] Barwise, 1971  X  X  

[11] Dietrich, 2004    X X 

[12] Sarter, 1991  o  X  

[13]Dominguez,1994 X  X X X 

[14] Smith, 1995  X o X X  

[15] Dostal, 2007  o  X  

Merriam-Webster  o    

[16] Singh, 2009 X  X  X 

[21] Steinberg, 1999 X  X X o 

Note: ‘o’ indicates partial support. 



2.1 Proposed definition 
Based on observing the common traits as well as a focus on 
staying computationally grounded, we define a situation as: 

“An actionable abstraction of observed spatio-temporal 
descriptors” 

Going right to left, let us consider each of the terms used in this 
definition: 

a) descriptors: We adopt the approach of quantifying an 
abstract/inexact notion based on its observed characteristics. This 
underlines that we want to computationally ground the definition.  

b) spatio-temporal: This work’s focus, scope, as well as the most 
common connotation associated with ‘situations’, is on spatio-
temporal data.  

c) observed: We focus on the ‘observable’ part of the world. 
Meta-physical as well as physical aspects which cannot be 
measured by sensors present are simply outside the scope of 
problems we can tackle.  

d) abstraction: We want to create information at a much higher 
level than sensor measurements or even their lower level 
derivations. Decision makers typically focus on higher 
(knowledge) level abstractions while ignoring the lower level 
details.  
e) actionable: The top level descriptors and abstractions need to 
be chosen based on the application domain, and the associated 
output state-space. Hence our focus is on creating a representation 
(e.g. classification) which maps the lower level details into one 
concrete output decision descriptor. Hence, we are not interested 
in any higher level abstraction, but rather the specific one which 
supports decision making in the application considered. 

As can be noticed, this definition operationalizes the reverberating 
threads found across different definitions in literature, and 
computationally grounds them.  

The difference in the definition of ‘situation’ as a concept also 
exemplifies the difference between our approach at tackling 
Situation recognition and similar efforts in Context-aware 
computing, Social media mining, Geographical Information 
Systems (GIS), Active databases, Multimedia analysis, and  
Complex event processing literature. For example, GIS 
community has studied spatial data analysis extensively but paid 
lesser attention to temporal aspects or real time streams. Complex 
Event processing research on the other hand focuses on real-time 
stream analysis but rarely considers the spatial semantics. In effect 
we are building upon and extending these efforts to make progress 
towards the problem of situation detection.  

3. OVERALL FRAMEWORK 
3.1 Overview  
We ground our discussion on modeling and detecting situations 
onto a generic framework which this work builds towards. This 
framework focuses on combining heterogeneous real-time data 
streams into actionable situations. The framework focuses on the 
spatio-temporal commonality across streams to integrate them. By 
using a simple unified representation (based on space-time-
theme), it indexes and organizes all data into a common 
representation. Similarly, for going from individual data nuggets 
(micro-events) to macro-situations it uses a set of generic spatio-
temporal analysis operators. A basic assumption in this approach 
is that spatio-temporal situations are determined by evaluating a 
large number of data streams that represent different attributes 

measured by either physical sensors or observed by human-
sensors. 

The fundamental data structure being operated on in this 
framework for combining spatio-temporal data is E-mage, each 
cell of which captures a value associated with a particular theme 
at a particular spatio-temporal coordinate. The use of grid is based 
on the understanding that grids are the fundamental data structure 
used by humans to understand and analyze spatial data (e.g. maps, 
satellite images). They also capture the semantics and notion of 
spatial neighborhood very elegantly, and geographical-joins [19] 
between data streams reduce to simple overlaying of grids.  An 
example of an E-mage is shown in Figure 2. E-mages were first 
defined in [2]. 

 
Figure 2: An E-mage showing user interest across mainland US 

in terms of number of tweets containing the term ’iphone’ on 11th 
Jun 2009 

3.2 Detecting Situations from Heterogeneous 
Streams 

The process of moving from heterogeneous streams to situations 
is shown in Figure 3. The unified STT format employed (level 1) 
records the data originating from any spatio-temporal bounding 
box using its numeric value. Aggregating such data results in two 
dimensional data grids (level 2). At each level the data can also be 
characterized for analytics. The situational descriptor (level 3) is 
defined by the user (application expert) as a function of different 
spatio-temporal characteristics.  

 
Figure 3: Approach for detecting Situations 

3.3 Data Representation Levels 
Level 0: Diverse Raw Data 

The framework supports data from different sources. Any sensor 
data can be associated to a stream based on its location and 
frequency of creation. Human sensor data, such as tweets and 
status updates can also be analyzed and converted to 
measurements related to a particular theme or attribute. Some data 
sources have tables or databases that are frequently updated to 
give certain sensory data collected by different agencies. Hence, 
we support as many different types of raw data as may be 
relevant. The types of data streams supported in the system will 



evolve as it is used for diverse applications. For computational 
purposes we normalize all data streams to numeric streams. 

Level 1: Unified Representation 

Heterogeneous data needs to be unified. Also, too much data can 
lead to high cognitive and data processing costs. This layer 
converts individual attributes into information in terms of ‘what-
when-where’ i.e. STTPoint, and facilitates aggregation of 
information in next (i.e. E-mage) level. 

Level 2: Aggregation 

Spatial data can be naturally represented in the form of spatial 
grids with thematic attributes. As explained, the framework 
considers E-mages, and E-mage Streams as its data model. This 
image-like representation allows application of a rich collection of 
image and video processing operators ranging from segmentation, 
aggregation, detecting spatial and temporal patterns, and tracking 
patterns across space and time. Such a representation also aids 
easy visualization, and provides an intuitive query and mental 
model. 

Level 3: Situation Detection and Representation 

The situation at a location is characterized based on spatio-
temporal descriptors determined by using appropriate operators at 
level 2. The final step in situation detection is a classification 
operation that uses domain knowledge to assign appropriate class 
to each cell. This classification results in a segmentation of an E-
mage into areas characterized by the situation there. Once we 
know the situation, appropriate actions can be taken. 

3.4 Operators 
Multiple operators need to be provided for analysis and 
characterization of temporal E-mage streams. The operators 
considered include Filter, Aggregation, Classification, Spatio-
temporal Characterization, and Spatio-temporal Pattern matching.  

3.5 Personalized Action Alerts 
The situations detected can be combined with individual user 
parameters for customized action taking. We focus on action 
recommendation using the E-C-A (Event-Condition-Action) [25] 
approach. The individual parameters can be spatio-temporal 
coordinates, as well as personal micro-events (e.g. ‘sneezing’) 
detected. The spatio-temporal coordinates can be used to direct 
users to nearest location satisfying certain conditions. Multiple 
such E-C-A templates can be registered to provide customized 
alerts to all recipients.  

4. SITUATION MODELING 
Situation modeling is the process of conceptually defining what 
constitutes an actionable situation in the application designer’s 
domain. It allows the designer to externalize what she means by a 
specific situation of interest (e.g. an ‘Epidemic’). Building this 
model in terms of conceptual building blocks rather than directly 
implementing them in code has multiple advantages. First, the 
application designers get to focus on the Big-Picture rather than 
getting bogged down by the implementation details. Next, such a 
process encourages a goal-driven thinking rather than an 
availability driven thinking [27]. Lastly, the modeling in terms of 
generic blocks allows for easy reuse of components across 
applications. 

To aid the creation of different situation models, we provide: 

1) The ‘building blocks’ 
a. Operators 
b. Operands 

2) An prescriptive approach  for modeling situations using 
the operators and operands  

3) Steps and guidelines for refining the models so that they 
are computable and explicit. 

4.1 Operators and Operands 
We want to provide constructs which are generic enough to 
capture most of the common requirements across different 
applications. At the same time these constructs need to be well-
defined and quantifiable. Considering these two (often competing) 
considerations we have defined the following set of operands and 
operators. 

4.1.1 Operands 
The operands in the framework are conceptual features, data 
representation levels, and supporting meta-data on which different 
operators may be applied.  

 

Figure 4: Operands for Situation Modeling 

The operands defined (also see Figure 4) are: 

1) Feature: Any spatio-temporal descriptor that contributes 
towards defining the overall situation. (e.g. growth rate of 
Flu reports) 

2) Representation level:  Data representation levels required 
(e.g. STT nuggets, Emages) 

3) Data source: The resource for obtaining data in any 
supported format. 

4) ST bounds: The Spatio-temporal bounding boxes to 
consider when obtaining data-streams or evaluating any 
features. 

5) Meta-data: Any additional details (e.g. Operator types, 
normalization bounds, output variables, thresholds) required 
for complete specification of the features or operators. 

4.1.2 Operators 

 
Figure 5: Operators for Situation Modeling 

The operators defined (refer Figure 5) are: 

1) Filter (∏): This allows for selection of data based on space, 
time, theme, or value parameters. 

2) Aggregation (⊕): This allows for features to be combined 
based on mathematical operators. 



3) Classification (γγγγ ): This operator classifies the values into 
different segments representing different semantic entities.  

4) Characterization [spatio-temporal] (φφφφ): This operator 
handles derivation of different spatio-temporally relevant 
attributes (e.g., epicenter, density, shape) for any data stream.  

5) Pattern Matching [spatio-temporal] (ψψψψ): This operator 
allows users to study how closely the captured phenomena match 
known patterns or related historical data.   

6) Transform (∆): This allows the data at any layer to be 
transformed into the next (higher) layer. It can be for: 

a) Data source to STT (Level 0 to Level 1): The wrappers 
to translate heterogeneous data into STT data nuggets.  

b) STT to Emages (Level 1 to Level 2): Combining STT 
nuggets into an aggregated Emage representation 

7) Learn (Φ): Sometimes the precise weight of the identified 
features on the situational descriptor might be unknown to the 
expert. In such cases the expert is required to identify the learning 
data source from which the system can automatically infer such 
values (e.g. using Machine Learning).  

4.2 The Wizard for modeling situations 
We also provide a prescriptive approach for creating situation 
models.  

As shown in Listing 1 the first step requires the application 
designer to identify the output state space (i.e. range for the 
output descriptor). Next she needs to identify the spatio-temporal 
bounds being considered. Next step is identifying the relevant 
features useful in defining the situation output.  If it is an 
imprecise classification type of problem, then the expert is 
required to identify the data source for ‘learning’ how the 
different features identified affect the situation classification.  

Listing 1: The approach for generating conceptual situation models 

For each of the features identified above, user needs to identify 
the data sources, representation levels required and the 
variables/themes needed for the transformation across levels. If 
the feature considered is atomic (i.e. detectable using well defined 
operations on a data stream) it is added to the model. In case the 

feature is not well defined yet, a recursive call is invoked onto the 
same algorithm to identify the relevant components and details for 
the one-lower level feature.  

As shown in Figure 6, such a process repeats itself in a recursive 
manner (akin to depth first search) until the high level situation 
description has been partitioned into explicitly observable or 
computable components.  

 
Figure 6: Recursive approach for defining situation variables  

4.3 Enhancing the model 
4.3.1 Refining the model  
A model created by the process above captures a baseline 
representation of an application designer’s model of a situation of 
interest. Just like E/R modeling [24] this process may require 
multiple iterations before the experts agree on a ‘good’ model. 
Suggested criteria to accept a ‘good’ model are: 

1. Do Features identified provide enough discriminative 
power to the model? 

2. Does the data stream chosen capture the semantics of 
the feature selected? 

3. Are there any cyclic reasoning or cyclic dependencies in 
the features selected?  

4.3.2 Instantiating the model 
The process of instantiation involves adding all the relevant 
details to make the operators computably explicit i.e. contain 
enough detail to be translated into code if required. This requires 
the following steps: 

1. Provide necessary parameters for operators in the 
model. 

2. Refine, if necessary 
 

The model created after undertaking all these steps would capture 
all the details (e.g. Operator types, normalization bounds, 
thresholds) required for implementation. The full details of all the 
parameters required to quantify each operator are discussed in [3]. 
Note that any platform specific details (e.g. implementation 
language, language related issues, data types, memory 
management) are still not (and not supposed to be) part of this 
model.  

Once satisfied with the model, the application designers can 
translate the model into code using a set of libraries which can be 
called programmatically or using a graphical tool like EventShop. 
With some training, and advancement in UI, we might see the 
domain experts themselves doing this translation, but we leave 
that outside the scope of our current discussion. 

4.4 Example: Modeling Epidemic Outbreaks 
Let us illustrate the process of situation modeling by considering 
‘epidemic outbreaks’. Given as-is, ‘epidemic outbreak’ is a vague 

/* Input: Situation descriptor (possibly complex and vague) */ 
/* Output: List of intermediate descriptors, data sources, and 
representation levels required */ 
Get_components (v){ 
1) Identify output state space 

• Numeric or Classes 
2) Identify S-T bounds 
3) Identify component features; v =f(v1, …, vk) 

• If (type = imprecise) 
• identify learning data source, method

  
4) ForEach (feature vi){ 

• If (atomic) 
• Identify Data source.  

• Type, URL, ST bounds    
• Identify highest Rep. level reqd. 
• Identify operations. 

• Else  
• Get_components(vi) 

} 



undefined notion. In fact not even all experts agree on what 
constitutes an Epidemic. Here we discuss the workflow for one 
possible modeling of epidemics. 

Following section 4.2, we first identify the output state space (i.e. 
required classification into low, mid, and high risk of outbreak). 
As shown in Figure 7 we identify the spatio-temporal bounds 
being considered <USA, with a spatial resolution of 0.1 latitude X 
0.1 longitude, and re-evaluation to be made every 5 minutes>. 
Next step is identifying the relevant features useful in defining the 
situation output. We define ‘epidemic outbreaks’ as a 
classification on ‘growing unusual activity’.  While this is a single 
feature, it is not atomic (i.e. cannot be derived directly using one 
data source). Hence we follow the process recursively, and try to 
model ‘growing unusual activity’. This feature is defined based on 
two component features: ‘Unusual activity’ and ‘Growth Rate’. It 
turns out that ‘Unusual activity’ is also not atomic, and needs to 
be split into the features of ‘historical activity level’ and ‘growth 
rate’. Let’s assume that the historical activity level is available 
from a curated database and current activity level can be measured 
based on the frequency of terms indicating ILI (Influenza-Like-
Illness) on Twitter stream. Similarly, the growth rate can be 
measured from Twitter stream.  

Hence, now we have three (‘leaf node’) features which can each 
be defined using a single data source and hence the modeling is 
complete. In effect we have split a vague concept (epidemic) into 
features such that each of them can be derived from a known data 
source.  

 
Figure 7: Base model created for epidemic outbreaks 

In practice, application designers may not be satisfied with the 
first created model. For example, let’s consider ‘current activity 
level’ which has been defined based on the number of Influenza-
Like-Illness (ILI) reports observed from each location. It may be 
better to regularize this value based on the population at each 
location. This leads to changes in part of the model shown in 
Figure 8. 

 
Figure 8: Situation model: Changes made in refinement phase 

Last phase in model creation is that of ‘instantiating’ it. This step 
involves adding the relevant details about the exact operation to 
be performed and the associated parameters. Further, certain 
parameters/ data sources may need to be refined. Here we scale 
the population Emage to the range [0,100] to be comparable to the 
incidents reported.  

Figure 9 shows the model with the relevant details added (e.g. [30, 
70] as the thresholds for classification; ‘And’ as the precise 
operation used for aggregation). Once this step is complete, the 
created model can be evaluated using EventShop or a similar 
validation toolkit.  

 
Figure 9: Situation model after the instantiation phase (details 

added in Red) 

 

5. EVENTSHOP: A TOOLKIT FOR RAPID 
VALIDATION OF SITUATION MODELS 
To easily validate, refine, and re-evaluate the situation models we 
have built a system called EventShop. EventShop includes a front 
end GUI (Graphical User Interface) and a back end stream 
processing engine. In the front end, EventShop borrows the idea 
of PhotoShop by providing a user-friendly GUI that allows end 
users to select different streams and configure situation filters. 
Users are also provided with a GUI tool which allows them to 
send personalized alerts to relevant people. Based on the 
information of registered data sources, EventShop continuously 
ingests spatio-temporal-thematic data streams and converts them 
to E-mage streams. Meantime, directed by the registered queries, 
EventShop pulls E-mage streams from data ingestors to query 
processor, which process the E-mage streams in each of the 
instantiated query operators. Besides being converted to E-mage 
streams, the raw data stream, (e.g. tweet stream) is also made 
persistent into raw data storage. Raw data together with query 
results provides necessary personal as well as local situation 
information to Personalized Alert Unit which can be used for 
creating situation aware applications. 
A snapshot of EventShop is shown in Figure 10. The basic 
components are: 

a) Data-source Panel: To register different data sources into the 
system. 

b) Operators Panel: Different operators that can be applied to any 
of the data sources. 

c) Intermediate Query Panel: A textual representation of the 
intermediate query currently being composed by the user. 



d) Registered Queries: A list of configured queries registered with 
the system. 

e) Results Panel: To see the output of the query (which can be 
presented on a map, timeline, as a numeric value or a 
combination). 

 
Figure 10. A snapshot of EventShop 

Implementation of runtime operators makes use of OpenCV 
package. More details on EventShop are presented in [3], and 
details of translating spatio-temporal operators into image/video 
processing operators are similar to [2]. While the primary goal of 
EventShop is to work on real-time streams it can also be 
configured to deal with archives of data streams entering the 
system at a configured rate. 

Note that the implementation in EventShop also provided us with 
evidence on the explicit and computable nature of each of the 
operators defined. Also note that we have decided to keep the 
learning operator outside the scope of the first implementation of 
EventShop. 

The system is available at [28]. We plan to release the system to 
the open source community in near future. 

6. EXPERIMENTAL VALIDATION 
We have tested our approach for situation modeling as well as 
detection across multiple applications. Our tested scenarios 
include Hurricane detection and mitigation, identifying weather 
patterns (e.g. Fall colors in New England), Influence patterns for 
different political figures, Identifying demand hot-spots of 
business products, Allergy risk and recommendation, Flu 
outbreak, Wildfires, Global Warming Index, Quality of Living, 
and Flood mitigation. We select three of these applications for our 
discussion here. We use them as representative examples to give a 
view of the diverse applications which can be studied using this 
approach.  

First example application is that of Epidemic Outbreaks. This 
example extends the discussion in section 4.4 and completes the 
lifecycle of a concept, from situation modeling to its actual 
implementation using EventShop. Second application is that of 
detecting large scale wild fires in California. Working on archived 
satellite and social streams, this application allows us to compare 
the performance of the created situation recognition models with 
the ground truth data. The third case study presents the results of 
applying this approach to aid real end users during the recent 
floods in Thailand. This example illustrates the life-cycle of going 
from situation models, to building situation-aware applications 
which can potentially help millions of users in real world 
situations.   

6.1 Detecting Epidemic Outbreaks 
To validate if the models created following the approach 
described in section 4 are indeed explicit and computable, we took 
the model and configured it in EventShop. A video capture of the 
process is available at [29]. In fact it turned out to be a very 
straightforward exercise as all the necessary building blocks and 
their configuration parameters were already specified in the 
model. The ability to translate the models into the system was 
akin to translating a schema into database tables once all the fields 
have been identified.  

For the current purpose we used an average of tweets on ILI for 
the last month to be the historical average level. We let the system 
run for two weeks (Apr/30/12-May/13/12) with real-time Twitter 
data feeds passing through the created filter, and (thankfully!) saw 
no severe Epidemic outbreak risks.  Sample Emages for the 
different data streams are shown in Figure 11 and a sample of the 
configured detector’s result is shown in Figure 12. 

 

 

 
Figure 11: Emage for (a) Reports on Flu (brighter indicates more 

reports), (b) Historical average, (c) Population 

 
Figure 12: ‘Epidemic outbreak’ risk level  

6.2 Detecting Wildfires 
Wildfires affect large portions of human ecology and often last 
days and weeks while spreading over large spatial boundaries. It 
was estimated that tropical fires around the world destroyed about 
15 X 106 km2 of forests in the last decade [26]. Quantitative 
information about the spatial and temporal distribution of fires is 
important for forest protection and in the management of forest 
resources. It is also indispensable to such disciplines as ecology, 
wildlife management and atmospheric chemistry.  

Hence we decided to build a computational model for recognizing 
wildfires. For this we approached a domain expert (a research 



scientist in Earth Science department at our university
requested her to volunteer for our case study.  

Based on the process described in section 4.2 and her expertise in 
the area of satellite based fire detection, she created a situation 
model shown in Figure 13. This model is loosely based on the 
algorithm described in [17]. It focuses on using satellite d
detect large wildfires. Specifically it focuses on anomalies in 
inter-band variation between 4µm and 11
radiations to detect wildfires. This inter-band variation can only 
be observed in unclouded regions; which are identified by 
analyzing the 12µm band’s radiation levels. 

Figure 13: ‘Wildfire’ recognition model using satellite data

We configured this model into EventShop and detected the 
various wildfire situations across California based on archives of 
satellite data streams. The archive of satellite data was obtained 
from NASA’s LAADS website. Using this model
achieve ~74% precision (refer Figure 17) at detecting large fires 
(>1000 m2) over last 2 years in California. The ground truth used 
for comparison was obtained from the website of the California 
Department of Forestry and Fire Protection. 

Figure 14: ‘Wildfire’ recognition model using social data

We discussed with the expert and built another model
14) using purely the social media (Fire related search queries 
made on Google from each location) data, and configured it onto 
EventShop. Note that the spatial granularity now is much coarser 
(data is available at ‘metro area’ level), but it complements the 
satellite based detection especially in cases where fire occurred in 
clouded regions, or was brief but affected large human 
populations.  

This model could detect Fire situations in the correct time
with ~70% accuracy. We consider this by itself to be 
interesting finding that indicates that spatio-
(millions of search query logs) can be combined to create the 

at our university) and 

Based on the process described in section 4.2 and her expertise in 
the area of satellite based fire detection, she created a situation 
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built another model (see Figure 
using purely the social media (Fire related search queries 

data, and configured it onto 
Shop. Note that the spatial granularity now is much coarser 

vailable at ‘metro area’ level), but it complements the 
atellite based detection especially in cases where fire occurred in 

clouded regions, or was brief but affected large human 

detect Fire situations in the correct time-frame 
We consider this by itself to be an 

-temporal nuggets 
can be combined to create the 

same effective information as earlier limited to satellites or the
proverbial ‘God’s view’[20].  

Lastly we decided to combine the two detection approaches and 
create a unified situation detector which simply combines the two 
detectors (see Figure 15). The combined detector could detect 
more than 90% of the large fires in California. 
shown in Figure 16 and a video capture
and results observed is available at [29

Figure 15: ‘Wildfire’ recognition model using satellite + social 
data 

Figure 16: ‘Wildfire’ recognition model using satellite data

Figure 17: Recognition performance 
across California over last 2 years

6.3 Building situation aware applications: 
Thailand Flood Risk Recommendations

After verifying the veracity of the approach at detecting spatio
temporal situations from archives of data streams, 
its application at processing real-time data streams to detect 
evolving situations to help people.  

We applied EventShop for the goal of 
people who were trapped in risky situations in 
The situation model for defining risk levels is shown 
(a graduate student from Thailand whose family was affected by 
the floods acted as our application expert in this study

The idea is to segment flooding areas into three groups based on 
flooding condition and shelter sufficiency
the information about the water depth level with 
availability to identify areas which have high levels of water but 

same effective information as earlier limited to satellites or the 

he two detection approaches and 
a unified situation detector which simply combines the two 

. The combined detector could detect 
more than 90% of the large fires in California. A sample output is 

capture of the filter configuration 
]. 
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Building situation aware applications: 
Thailand Flood Risk Recommendations 

After verifying the veracity of the approach at detecting spatio-
temporal situations from archives of data streams, let’s consider 

time data streams to detect 

 suggesting safe locations to 
risky situations in Thailand flood. 

for defining risk levels is shown in Figure 18 
graduate student from Thailand whose family was affected by 

the floods acted as our application expert in this study). 

flooding areas into three groups based on 
sufficiency. The model combines 

the information about the water depth level with the nearby shelter 
to identify areas which have high levels of water but 



no open shelters. The shelter coverage has been defined based on 
a Gaussian coverage assumed for each shelter location. The data 
on the water level was made available by Google.org and 
updated roughly every 6 hours. The locations of currently active 
shelter locations) were constantly being updated by the 
ground volunteers in Thailand. We could use this source
stream from http://shelter.thaiflood.com/webservice/request.kml

Figure 18: ‘Flood threat level’ detection model

 Figure 19: Sample Emages showing (a) Flood Water Level 
(brighter implies higher water level), and (b) Shelter Coverage

We ran this application during Oct 2011-Dec 2011. Sample 
Emages for the Flood Water Levels and the Shelter Coverage are 
shown in Figure 19. The central Bangkok city area was relatively 
well covered by shelters and also had low water level incisions 
because of walls built around the city. As can be seen from a 
sample result snapshot in Figure 20, large parts of country 
however were under severe threat (shown in red in the figure). 

We wanted to use the information about the threat level to aid the 
people in severe risk level areas. As a first step we reached out to 
all people who had tweeted with a Flood related term in the last 
24 hours. A sample Emage capturing the relative incidence of 
such tweets is shown in Figure 21[a]. Using the personalized 
action taking capability of EventShop we configured a rule which 
could automatically send back tweets to all the users in severe risk 
areas advising them to move to the nearest open shelter 
immediately. The tweets also contained a pointer to a web URL 
containing physical address and other detailed information (e.g.  
current vacancy, phone number, directions) about the nearest open 
shelter. The twitter account used for sending out the Tweets was 
@SocLifeNetworks. Some of the tweets sent out are shown in 
Figure 21[b]. As can be seen some of our tweets were re
by the receivers, thus indicating a positive interest in receiving 
and spreading such information.  

he shelter coverage has been defined based on 
a Gaussian coverage assumed for each shelter location. The data 
on the water level was made available by Google.org and was 

hours. The locations of currently active 
constantly being updated by the at-the-

ground volunteers in Thailand. We could use this source as a data 
http://shelter.thaiflood.com/webservice/request.kml .  
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k tweets to all the users in severe risk 
areas advising them to move to the nearest open shelter 
immediately. The tweets also contained a pointer to a web URL 
containing physical address and other detailed information (e.g.  

directions) about the nearest open 
shelter. The twitter account used for sending out the Tweets was 
@SocLifeNetworks. Some of the tweets sent out are shown in 
Figure 21[b]. As can be seen some of our tweets were re-tweeted 

a positive interest in receiving 

Figure 20: Classification on ‘Flood threat level’ and 
configuration to send out tweets. 

Figure 21: (a): Sample Emage showing activity areas f
related to Thai Flood, and (b): Sample tweets sent out to real 

users in high risk situations. 

6.4 Discussion and Future Outlook
We applied this framework to many application
here our experience with three. The three applications 
were to demonstrate different aspects of the framework. 
the complete process of modeling and detecting 
outbreaks. In Wildfire detection application
models can be revised and augmented to include diverse sources 
until satisfactory level of recognition performance is achieved. 
Lastly, in the Thailand Flood Risk Recommendation
we saw how such models can be used to build first
situation-aware applications which provide a complete loop from 
user generated data, to situation detection in the cloud, to alert
sent back to the users. By combining different data streams we 
were able to detect risky situations and aid 
real time.  

Put together, the three applications also highlight the adaptability 
and the expressiveness of the modeli
framework at handling different situations across different spatio
temporal bounds in diverse application domains. 

As mentioned, the video captures of testing the situation models 
using EventShop are available at [29]. Additionally 
provides video captures for a Hurricane mitigation application 
(which directs people to nearest shelters based on predicted 
hurricane path, population, and open Red Cross shelters data
an Asthma/Allergy recommendation ap
Allergy Risk level based on combination of pollen count data, 
pollution level, and number of Twitter reports mentioning allergy 
symptoms). 

Referring back to Figure 1, note that building the
described required a situation driven perspective (and a 
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Allergy Risk level based on combination of pollen count data, 
pollution level, and number of Twitter reports mentioning allergy 

note that building the applications 
on driven perspective (and a relevant 



computational framework). The concepts detected were 
intrinsically evolving, occurred in the real world, and inherently 
manifested themselves over heterogeneous multimedia streams 
coming from multiple sources.  An ability to combine data over 
both space (e.g. millions of search logs across locations) and time 
(e.g. historical average comparisons) was critical for handling 
these situations. Similarly sourcing the data from any relevant 
media type (incl. Twitter, Census, Satellite, Google Search logs, 
citizen-generated KML) was pivotal to modeling and solving the 
problems in the real-world (and not the media silos). 

This paper shows the potential of Situation Recognition in aiding 
diverse human applications. Solving the variety of issues 
associated with Situation Recognition shall require a concerted 
community effort on multiple aspects like multimodal data fusion, 
scalable data analysis, data representation, media processing 
techniques, machine learning, and predictive modeling. This 
provides newer challenges (and opportunities) for the research 
community to work towards tackling each of these problems from 
a new situation-driven perspective. The rewards associated with 
Situation Recognition would clearly be unprecedented. We shall 
be able to maintain an evolving pulse of the world respond to 
various situations in real-time to save human lives and resources.    

7. CONCLUSIONS  
This paper motivates and computationally grounds the problem of 
combining heterogeneous dynamic big multimedia data into 
actionable situations. Specifically the paper focuses on describing 
a generic approach for modeling and recognizing situations. 
Looking back at section 1, this paper counters three fundamental 
problems in situation recognition. It provides a computational 
definition to the notion of situation. It presents a methodology for 
modeling situations based on generic conceptual blocks, and 
describes a toolkit to rapidly implement, validate, and refine these 
situation models. Results obtained across different applications 
highlight the potential of such an approach at detecting diverse 
situations. Further growth in the area of situation recognition is 
imperative, and would allow for detection of an evolving pulse of 
the world by combining heterogeneous, spatially-aware, real-time, 
big multimedia data. 
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