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Abstract

With the growth in social media, internet of thingad planetary-
scale sensing there is an unprecedented needinailats spatio-
temporally distributed multimedia streams into @acéble
information. Consequently the concepts like objestenes, and
events, need to be extended to recogn&iations (e.g.
epidemics, traffic jams, seasons, flash mobs). Thaper
motivates and computationally grounds the problémsitation
recognition. It describes a systematic approach cfambining
multimodal real-time big data into actionable siioias.
Specifically it presents a generic approach feodeling and
recognizing situations A set of generic building blocks and
guidelines help the domain experts model theirasibms of
interest. The created models can be tested, refaredi deployed
into practice using a developed system (EventSh@psults of
applying this approach to create multiple situatovare
applications by combining heterogeneous streants {ewitter,
Google Insights, Satellite imagery, Census) arsered.

Categories and Subject Descriptors
H.5.1 Multimedia Information Systems], D.3.3 [Information
System$: World Wide Web -Social Networks

Keywords
Events, Situation, Situation Detection, Modelingjtu&ion
Awareness, Social Networks, Sensor Networks

1. INTRODUCTION

We are living in an age of abundance [1]. Humarstymore

connected than ever before. With the growth treimdsocial

medig multimodal mobile sensingnd location driven sensing,
increasingly larger parts of human life are gettdigitized and
becoming available in the Cloud for sense making.

The fundamental problem of sense-making is thanafing sense

and consumersof multimedia data. Hence sense-making from
real-time multimodal location-aware data will bes tholy-grail’
of Computer Science problems for the coming decade.
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Figure 1: Different Types of Concepts can be detkat different
data availability settings. Single media, suchmages, results in
concepts more in images than in the real world, bsing

different media it is possible to detect concepthe real world

The time is right now to channel the lessons lefiamh detecting
intra-media conceptgi.e. those which manifest themselves, and
can be detected within a single media object etgeeg or a chair
in an image), to define and making quick progressietecting
evolving concepts(i.e. those which occur in real world, are
constantly evolving, and inherently manifest theles over
heterogeneous multimedia streams from numerousasur As a
simple example, we may now look beyond the problen
creating atree detector and/or testing it over Millions of Flickr
images; to that of using a stream of Billions oftsimages and
other available data to detect seasonal patterasit plisease
spreads, deforestation trends, or global warmirges€ are the
problems which could not be tackled earlier becaidgke lack of
data and computational resources; but those aréomger the
bottlenecks.

As shown in Figure 1Situation recognition builds on and

of the observed datdror multiple decades, researchers have been extends object recognition, scene recognitionvigtand event

building approaches like entity resolution, objéetection, and
scene recognition, to understand different aspafctise observed
world. Unlike the past though, now we do not needitdertake
sense-making based on data coming from a singléaneéeinent,
modality, time-frame, or location of media captuReal world
phenomena are now being observed by multiple msilésams,
each complementing the other in terms of data cheniatics,
observed features, perspectives, and vantage p&ath of these
multimedia streams can now be assumed to be almilabreal-
time and increasingly larger portion of these canseribed with
space and time semantics. The number of such nedeiments
available (e.g. Tweets, Flickr posts, sensors @jas already in
the order of trillions [20], and computing resowraequired for
analyzing them are easily available. We expect thénd to
continue; and mobile devices to become the biggestlucers
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recognition, and complex event processing. Examplaglevant
situations are all around us including beautifsdahurricanes/
wildfires, traffic (jams / smooth/ normal), econ@miecessions/
booms, block-busters, droughts/ great-monsoonsogssa(early-
fall/ fall/ late-fall), demonstrations/ celebratmrsocial uprisings/
happiness-index, flash-mobs, flocking and so ®hey vary
across, and affect all aspects of human lives -ttheaatural
disaster, traffic, economy, social reforms, andifess decisions.
Detecting situations in time to take appropriatioas for saving
lives and resources can transform multiple aspEdisiman life.

The challenges in Situation recognition would badamentally
different from those in object or event recognitiém effect, this
problem brings us back to the drawing boards agstablish the
process of concept detection from very heterogesemery
unstructured, real time, big data. For example,case no longer
justacceptheterogeneity, oallow multiple data streams; we need
to expectthem andcapitalize on them. We need to focus on
recognition of real world phenomena based on tf@itprints
across multiple heterogeneous media. This willvalls to solve



practical human problems by correlating data ragdiom social
media, to sensor networks, and satellite data. i@enfurricane
mitigation as an example. The data streams foridaure status
(e.g. NOAA.gov), weather forecast (weather.com)pysation

demographics (census.gov), rescue shelters (redorgs and
traffic directions (maps.google.com) are all frealsailable on the
Web. But we still lack the computational framewot@sunify and

process such heterogeneous streams to solve piguriblems.

Multimedia research community is particularly wedsitioned to
take on the challenge of Situation Recognition.stFirthe

community’s core competence lies in handling hefen@ous
media (audio, video, text, phone logs, micro-blagmsors etc.).
Equally importantly, it is the only research comntyivhich has

studied concept detection across both time (evetgction), and
space (like spatial organization of pixels in ims)gdhe tools for
raster image processing translate directly ontdiapdata layouts
and notions of neighborhood, regions, boundaries, motion

vectors translate seamlessly across to spatio-tethpmalysis.

We just need to change the perspective and foctisez@ notions
in the real world rather than the media silos.

Building the tools and techniques to handle théousrchallenges
in defining new concepts, dealing with big datawnoé, and
building cross-media processing tools require aglolerm

community effort. This paper describes the firststeynatic

attempt towards detecting situations in the contéxXtirge scale
spatio-temporal multimedia streams. Correspondintjlg scope
of this paper is to identify and illustrategeneric approach for
modeling and recognizing situationsSpecifically, we identify 3
main problems essential for situation recognition:

1) The concept of ‘situation’ is still ill definedprevious
attempts ignored the role of big, real-time, hetgmoeous, spatio-
temporal streams.

2) There is a lack of conceptual tools to help ssandel their
situations of interest, and

3) No tools are available to rapidly implement thestuation
models, and reevaluate and refine as required.

This paper describes an approach for tackling eafclihese
challenges. After surveying different interpretacof situation, a
computational definition for it is developed. Newte describe a
step by step approach to help domain experts iratioge
computational recognition models for different ations. We
provide guidelines and support a design processatke sure that
the models generated are explicit, actionable, @mdputable. A

[31], mobile application software, aviation/air ffr@ control [4,
6, 12], robotics, industrial control [11], militargommand and
control [5], surveillance [22], linguistics [10],tack market
databases [30], and multimedia analysis[23] on afitn
modeling, situation awareness, situation calculsguation
control, and situation semantics. The interpretaid situation
however is different across different areas andneweross
different works within the same area.

To highlight the common themes and illustrate therity in
interpretations, we present some sample definitins.

. Endsley, 1988: “the perception of elements in tm¥irenment
within a volume of time and space, the comprehansfaheir meaning,

and the projection of their status in the near fatu

Merriam-Webster dictionary: “relative position arombination of
circumstances at a certain moment”

McCarthy, 1969: “A situation is a finite sequermfeactions.”

Yau, 2006: “A situation is a set of contextshe &pplication over a
period of time that affects future system behavior”

. Dietrich, 2003: “...extensive information about thevironment to
be collected from all sensors independent of thrface technology.
Data is transformed into abstract symbols. A comatim of symbols

leads to representation of current situations...wldah be detected”

Some common traits as well as the dissimilaritiesoragst
different definitions are clear. Most telling pepsais the
observation by Jakobson et al that “...being a negfitinew field,
there is a clear lack of theoretic well-groundedmomn
definitions, which may be useful across differeoinéins.” [18].

We decided to focus on the commonalities acrossitiehs, and

identified the following notions to reverberate@as definitions:
1) Goal based (GB): Situations need to be defined for an

application or a purpose.

2) Space and time (ST):Situationscapture and represent a
volume of space and/or time.

3) Future actions (FA): Situations can be used for future
prediction and/or action taking.

4) Abstraction (AB): Situations signify some form of

perception, or for
understanding.

Further while some definitions weosemputationally grounded

(CG) in data (e.g. Endsley, Dietirch), others were ralost(e.g.

Barwise, Merriam-Webster). Here, we summarize sahé¢he

definitions surveyed based on these axes:

symbolic  representation higher

toolkit to rapidly implement and evaluate theseuatibn
recognition models helps building solutions. Thedeiog tool

and the implementation are based on the use oéspat time as

the unifying axes for heterogeneous data, and cspatiporal

features as those important to application desgytedifferentiate

between classes of spatio-temporal phenomena. Th

implementation of the recognition models is builpon

transposing the spatio-temporal operators intoeraishage and

video operations under the hood. Once refined watiisfactory

levels of detection/ recognition are achieved,dbtectors can be

used to build situation based applications to geeeappropriate
information and personalized actions.

We will discuss the use of the proposed approaobsaanultiple

applications dealing with diverse data streams.

2. SITUATION: DEFINITION

Work Goal Space | Future Abstr | Computat

Based Time Actions | action | ionally
Grounded

[4] Endsley, 1988 X X X X

[5] Moray, 2004 0 X

[6] Adam, 1993 X X

€[7] Jeannot, 2003 X

[8] McCarthy, 1969 X

[9] Yau, 2006 X X X

[10] Barwise, 1971 X X

[11] Dietrich, 2004 X X

[12] Sarter, 1991 [ X

[13]Dominguez,1994 X X X X

[14] Smith, 1995 X [ X X

[15] Dostal, 2007 0 X

Merriam-Webster [

[16] Singh, 2009 X X X

[21] Steinberg, 1999 X X X [

There has been a large amount of work done in thasalike
ubiquitous/pervasive computing [9], context-awa@mputing

Note: ‘0’ indicates partial support.



2.1 Proposed definition
Based on observing the common traits as well ascasf on
staying computationally grounded, we define a situmaas:

“An actionable abstraction of observed spatio-tempial
descriptors”

Going right to left, let us consider each of therte used in this
definition:

a) descriptors: We adopt the approach of quantifying an
abstract/inexact notion based on its observed ctarstics. This
underlines that we want to computationally grouma definition.

b) spatio-temporal: This work’s focus, scope, as well as the most

common connotation associated with ‘situations’,ors spatio-
temporal data.

c) observed: We focus on the ‘observable’ part of the world.
Meta-physical as well as physical aspects whichneotrbe
measured by sensors present are simply outsidesdbpe of
problems we can tackle.

d) abstraction: We want to create information at a much higher

level than sensor measurements or even their lo\eeel
derivations. Decision makers typically focus on Hag
(knowledge) level abstractions while ignoring trewvér level
details.

e) actionable: The top level descriptors and abstractions need to

be chosen based on the application domain, anchdbeciated
output state-space. Hence our focus is on creatiegresentation
(e.g. classification) which maps the lower levetails into one

concrete output decision descriptor. Hence, wenateinterested
in any higher level abstraction, but rather tgecificone which

supports decision making in the application conside

As can be noticed, this definition operationalittes reverberating
threads found across different definitions in &tere, and
computationally grounds them.

The difference in the definition of ‘situation’ a@s concept also
exemplifies the difference between our approachtaakling
Situation recognition and similar efforts in Corttexare
computing, Social media mining, Geographical Infation
Systems (GIS), Active databases, Multimedia anslysind
Complex event processing literature. For examplelS G
community has studied spatial data analysis extelsbut paid
lesser attention to temporal aspects or real tineams. Complex
Event processing research on the other hand foarsesal-time
stream analysis but rarely considers the spatrahsécs. In effect
we are building upon and extending these effortaaie progress
towards the problem of situation detection.

3. OVERALL FRAMEWORK
3.1 Overview

We ground our discussion on modeling and deteditigations

onto a generic framework which this work builds &wds. This
framework focuses on combining heterogeneous neal-data
streams into actionable situations. The framewordu$es on the
spatio-temporal commonality across streams to iateghem. By
using a simple unified representation (based oncestiene-

theme), it indexes and organizes all data into anmgon

representation. Similarly, for going from individudata nuggets
(micro-events) to macro-situations it uses a segesferic spatio-
temporal analysis operators. A basic assumptiahigapproach
is that spatio-temporal situations are determingcevmluating a
large number of data streams that represent diffeaétributes

measured by either physical sensors or observecugan-
sensors.

The fundamental data structure being operated onthia

framework for combining spatio-temporal data is Bg®, each
cell of which captures a value associated with iqudar theme
at a particular spatio-temporal coordinate. Theafggid is based
on the understanding that grids are the fundamelatial structure
used by humans to understand and analyze spat#a(elg. maps,
satellite images). They also capture the semaatick notion of
spatial neighborhood very elegantly, and geogradjoins [19]

between data streams reduce to simple overlayingridé. An

example of an E-mage is shown in Figure 2. E-magae first

defined in [2].

High

interest

Low
interest

10 x »

Figure 2: An E-mage showing user interest acrosgfaad US
in terms of number of tweets containing the tephdne’ on 11th
Jun 2009

3.2 Detecting Situations from Heterogeneous

Streams

The process of moving from heterogeneous streansguations
is shown in Figure 3. The unified STT format emgdy(level 1)
records the data originating from any spatio-teraptounding
box using its numeric value. Aggregating such dasalts in two
dimensional data grids (level 2). At each leveldia¢a can also be
characterized for analytics. The situational dggori (level 3) is
defined by the user (application expert) as a foncof different
spatio-temporal characteristics.

Level O: Raw data streams
B, 7
e.g. tweets, cameras, traffic, weather, ... & HE @
. By =
> & & (¢)
~ | of
Level 1: Unified B
representation
(STT Data) STT Stream
Level 2:
Aggregation  ——{Properties | | Emage
(Emage)
Operations
Level 3:
symbolicrep. Situation
(Situations)

Figure 3: Approach for detecting Situations

3.3 Data Representation Levels
Level O: Diverse Raw Data

The framework supports data from different sourées; sensor
data can be associated to a stream based on #tiolocand
frequency of creation. Human sensor data, suchwast$ and
status updates can also be analyzed and convened
measurements related to a particular theme obatéri Some data
sources have tables or databases that are freguerdhted to
give certain sensory data collected by differergraies. Hence,
we support as many different types of raw data &/ e
relevant. The types of data streams supporteddrsyistem will



evolve as it is used for diverse applications. Eomputational
purposes we normalize all data streams to numegarss.

Level 1: Unified Representation

Heterogeneous data needs to be unified. Also, tochndata can
lead to high cognitive and data processing costss Tayer
converts individual attributes into information terms of ‘what-
when-where’ i.e. STTPoint, and facilitates aggriegat of

information in next (i.e. E-mage) level.

Level 2: Aggregation

Spatial data can be naturally represented in the fof spatial
grids with thematic attributes. As explained, thanfework
considers E-mages, and E-mage Streams as its datel.nThis
image-like representation allows application oich icollection of
image and video processing operators ranging fregmentation,
aggregation, detecting spatial and temporal patteand tracking
patterns across space and time. Such a representdto aids
easy visualization, and provides an intuitive quand mental
model.

Level 3: Situation Detection and Representation

The situation at a location is characterized basadspatio-
temporal descriptors determined by using appropogierators at
level 2. The final step in situation detection isclassification
operation that uses domain knowledge to assignogppte class
to each cell. This classification results in a segtation of an E-
mage into areas characterized by the situationeth®nce we
know the situation, appropriate actions can bertake

3.4 Operators

Multiple operators need to be provided for analysiad
characterization of temporal E-mage streams. Therabprs
considered include Filter, Aggregation, Classifimaf Spatio-
temporal Characterization, and Spatio-temporakPathatching.

3.5 Personalized Action Alerts

The situations detected can be combined with iddiai user
parameters for customized action taking. We focosaction
recommendation using the E-C-A (Event-Conditioniéwa) [25]
approach. The individual parameters can be spetiporal
coordinates, as well as personal micro-events (sreezing’)
detected. The spatio-temporal coordinates can bd t direct
users to nearest location satisfying certain cast Multiple
such E-C-A templates can be registered to provig&omized
alerts to all recipients.

4. SITUATION MODELING

Situation modeling is the process of conceptuaéfiming what

constitutes an actionable situation in the appbcatesigner’s

domain. It allows the designer to externalize wdte¢ means by a
specific situation of interest (e.g. an ‘EpidemidBuilding this

model in terms of conceptual building blocks rattremn directly

implementing them in code has multiple advantaga@st, the

application designers get to focus on the Big-Pectather than
getting bogged down by the implementation detdilsxt, such a
process encourages a goal-driven thinking rathean tkan

availability driven thinking [27]. Lastly, the molilgg in terms of

generic blocks allows for easy reuse of componetsss

applications.

To aid the creation of different situation modelg, provide:

1) The ‘building blocks’
a. Operators
b. Operands

2) An prescriptive approach for modeling situatiorséng
the operators and operands
3) Steps and guidelines for refining the models sottheay
are computable and explicit.
4.1 Operators and Operands
We want to provide constructs which are genericughoto
capture most of the common requirements acrosserdift
applications. At the same time these constructsl neebe well-
defined and quantifiable. Considering these twtefotompeting)
considerations we have defined the following sevdrands and
operators.

4.1.1 Operands

The operands in the framework are conceptual fesfudata
representation levels, and supporting meta-datatoch different
operators may be applied.

Flu reports
Representation level

Data sources

Features

Spatio-temporal
bounds

Meta-data

Figure 4: Operands for Situation Modeling
Theoperandsdefined (also see Figure 4) are:

1) Feature: Any spatio-temporal descriptor that contributes
towards defining the overall situation. (e.g. growdte of
Flu reports)

2) Representation level: Data representation levels required
(e.g. STT nuggets, Emages)

3) Data source:The resource for obtaining data in any
supported format.

4) ST bounds:The Spatio-temporal bounding boxes to
consider when obtaining data-streams or evaluatiyg
features.

5) Meta-data: Any additional details (e.g. Operator types,
normalization bounds, output variables, threshaldgquiired
for complete specification of the features or ofma

4.1.2 Operators

Filter

Aggregate
Classification
Characterization

Pattern Matching

Transform

CECISNONINCKS)

Learn

Figure 5: Operators for Situation Modeling
Theoperatorsdefined (refer Figure 5) are:

1) Filter ([]): This allows for selection of data based on space,
time, theme, or value parameters.

2) Aggregation (d): This allows for features to be combined
based on mathematical operators.



3) Classification § ): This operator classifies the values into
different segments representing different semaantiities.

4) Characterization [spatio-temporal] (@: This operator
handles derivation of different spatio-temporallyelevant
attributes (e.g., epicenter, density, shape) fgrdaia stream.

5) Pattern Matching [spatio-temporal] ): This operator
allows users to study how closely the captured phwma match
known patterns or related historical data.

6) Transform (A): This allows the data at any layer to be
transformed into the next (higher) layer. It carfdre

a) Data source to STT (Level 0 to Level The wrappers
to translate heterogeneous data into STT data msigge

b) STT to Emages (Level 1 to Level Zfombining STT
nuggets into an aggregated Emage representation

7) Learn (®@): Sometimes the precise weight of the identified
features on the situational descriptor might benaomkn to the
expert. In such cases the expert is required tatifgethe learning
data source from which the system can automati¢afgr such
values (e.g. using Machine Learning).

4.2 The Wizard for modeling situations
We also provide a prescriptive approach for creasituation
models.

As shown in Listing 1 the first step requires theplecation
designer to identify the output state space (iamge for the
output descriptor). Next she needs to identify ghatio-temporal
bounds being considered. Next step is identifyihg televant
features useful in defining the situation outputf it is an
imprecise classification type of problem, then taepert is
required to identify the data source for ‘learninigbw the
different features identified affect the situatidassification.

/* Input: Situation descriptor (possibly complexdarague) */
/* Output: List of intermediate descriptors, datuces, and
representation levels required */
Get_components (V){
1) lIdentify output state space

*  Numeric or Classes
2) ldentify S-T bounds
3) Identify component featureg;=f(v, ...

» If (type = imprecise)

» identify learning data source, method

» )

4) ForEach (featurg){
» If (atomic)
* ldentify Data source.
e Type, URL, ST bounds
» ldentify highest Rep. level reqd.
* ldentify operations.

e Get_componentsy

Listing 1: The approach for generating conceptualation models

For each of the features identified above, usedsi¢e identify
the data sources, representation levels required #re
variables/themes needed for the transformationsachevels. If
the feature considered is atomic (i.e. detectabilegumwell defined
operations on a data stream) it is added to theemdrd case the

feature is not well defined yet, a recursive calinvoked onto the
same algorithm to identify the relevant componemid details for
the one-lower level feature.

As shown in Figure 6, such a process repeats itselfrecursive
manner (akin to depth first search) until the highel situation
description has been partitioned into explicitlysetvable or
computable components.

@
?!

z

Sltuatlon
descriptor

Intermediate
descriptor

Data source

Figure 6: Recursive approach for defining situatiariables
4.3 Enhancing the model
4.3.1 Refining the model

A model created by the process above captures alifms
representation of an application designer’'s modlel situation of
interest. Just like E/R modeling [24] this procesay require
multiple iterations before the experts agree org@od’ model.
Suggested criteria to accept a ‘good’ model are:

1. Do Features identified provide enough discriminativ
power to the model?

2. Does the data stream chosen capture the sematritics o
the feature selected?

3. Are there any cyclic reasoning or cyclic dependesan
the features selected?

4.3.2 Instantiating the model

The process of instantiation involves adding ak trelevant
details to make the operators computably expli@t tontain
enough detail to be translated into code if regliféhis requires
the following steps:

1. Provide necessary parameters for operators in the
model.
2. Refine, if necessary

The model created after undertaking all these stepdd capture

all the details (e.g. Operator types, normalizatibounds,
thresholds) required for implementation. The fidtalls of all the
parameters required to quantify each operator iaoeissed in [3].
Note that any platform specific details (e.g. inmpémtation
language, language related issues, data types, memo
management) are still not (and not supposed tophg) of this
model.

Once satisfied with the model, the application giesis can
translate the model into code using a set of libsawhich can be
called programmatically or using a graphical také IEventShop.
With some training, and advancement in Ul, we migéé the
domain experts themselves doing this translatian, vibe leave
that outside the scope of our current discussion.

4.4 Example: Modeling Epidemic Outbreaks

Let us illustrate the process of situation modeliygconsidering
‘epidemic outbreaks’. Given as-is, ‘epidemic outtik'es a vague



undefined notion. In fact not even all experts agomn what
constitutes an Epidemic. Here we discuss the workflor one
possible modeling of epidemics.

Following section 4.2, we first identify the outpstate space (i.e.
requiredclassification into low, mid, and higtisk of outbreak).
As shown in Figure 7 we identify the spatio-tempdraunds
being consideredUSA, with a spatial resolution of 0.1 latitude X
0.1 longitude, and re-evaluation to be made evemiButes>
Next step is identifying the relevant features ukif defining the
situation output. We define ‘epidemic outbreaks’ as
classification on ‘growing unusual activity’. Waithis is a single
feature, it is not atomic (i.e. cannot be derivé@atly using one
data source). Hence we follow the process recuysiead try to
model ‘growing unusual activity’. This feature isfthed based on
two component features: ‘Unusual activity’ and ‘@th Rate’. It
turns out that ‘Unusual activity’ is also not atemand needs to
be split into the features of ‘historical activigvel’ and ‘growth
rate’. Let's assume that the historical activitydeis available
from a curated database and current activity lesrlbe measured
based on the frequency of terms indicating ILI I(lehza-Like-
lliness) on Twitter stream. Similarly, the growthte can be
measured from Twitter stream.

Hence, now we have three (‘leaf node’) featuresctvtdgan each
be defined using a single data source and hencendueling is
complete. In effect we have split a vague concepidemic) into
features such that each of them can be derived &rdmown data
source.

Ie p 3
e high} _,.*

Growing Unusual
activi
Unusual
Activity?
©
Historical activity
level
|

Emage (Historical
avg)

Growth Rate
Emage
(#fenor(s IL1)
Twitter-Flu ‘7777}
Smins, |
|
S|

0.01x0.01

,ml
level
)
Emage
Z (#reports IL1) /
o=t
Figure 7: Base model created for epidemic outbreaks

In practice, application designers may not be fiatiswith the
first created model. For example, let's considenrent activity
level’ which has been defined based on the numb&floenza-
Like-lliness (ILI) reports observed from each ldoat It may be
better to regularize this value based on the pdpulaat each
location. This leads to changes in part of the rhathe®wn in

Figure 8.
\evel

(#reports L) ()
CSsv- ‘q
Population

Figure 8: Situation model: Changes made in refinenphase

Last phase in model creation is that of ‘instamgitit. This step
involves adding the relevant details about the erperation to
be performed and the associated parameters. Furtieetain
parameters/ data sources may need to be refinge. Wie scale
the population Emage to the range [0,100] to bepaoable to the
incidents reported.

Figure 9 shows the model with the relevant detadided (e.g. [30,
70] as the thresholds for classification; ‘And’ #se precise
operation used for aggregation). Once this stegoiaplete, the
created model can be evaluated using EventShop simiar

validation toolkit.

Unusua\achvw
Unusua\
Activity?
H\stor\ca\ Current activity
activity level level —
< subtr
Emage @ . [o100]
(H\stor\ca\avg)
5 mins,

0.01x 0.01

Growth Rate

Emage
(#reports|Ll)

Census.gov

Figure 9: Situation model after the instantiationgse (details
added in Red)

5. EVENTSHOP: A TOOLKIT FOR RAPID
VALIDATION OF SITUATION MODELS

To easily validate, refine, and re-evaluate theagsibn models we
have built a system called EventShop. EventShopdes a front
end GUI (Graphical User Interface) and a back etrdam
processing engine. In the front end, EventShopowmrthe idea
of PhotoShop by providing a user-friendly GUI ttediows end
users to select different streams and configureasdn filters.
Users are also provided with a GUI tool which alothem to
send personalized alerts to relevant people. Basedthe
information of registered data sources, EventShaqtimuously
ingests spatio-temporal-thematic data streams angects them
to E-mage streams. Meantime, directed by the mgidtqueries,
EventShop pulls E-mage streams from data ingestorguery
processor, which process the E-mage streams in efdhe
instantiated query operators. Besides being coedexd E-mage
streams, the raw data stream, (e.g. tweet stresm)sb made
persistent into raw data storage. Raw data togetlidr query
results provides necessary personal as well ad kitzation
information to Personalized Alert Unit which can bsed for
creating situation aware applications.

A snapshot of EventShop is shown in Figure 10. Dlasic
components are:

a) Data-source Panel: To register different datacgs into the
system.

b) Operators Panel: Different operators that caagied to any
of the data sources.

c) Intermediate Query Panel: A textual represemtatdf the
intermediate query currently being composed byuses.



d) Registered Queries: A list of configured queriagistered with
the system.

e) Results Panel: To see the output of the quehjcfwcan be
presented on a map, timeline, as a numeric valueaor
combination).

(B) Operators Panel
E.,.mm V& B ® " e P TS

Take Astion

f (C) Intermediate Query Panel
uery

(D) Registered Queries

[ecue I sun

) 7 (E)Result Panel Somiaeaazen

[ VeowCa soure |
[AdNew Dain Souce]

(A) Data Source Panel Numeric Numeric output
i Disabie mags Hige Timeline )

Figure 10. A snapshot of EventShop

Implementation of runtime operators makes use oErn@Y
package. More details on EventShop are presentd@8]jrand
details of translating spatio-temporal operatotse iimage/video
processing operators are similar to [2]. While piienary goal of
EventShop is to work on real-time streams it caso abe
configured to deal with archives of data streamteramg the
system at a configured rate.

Note that the implementation in EventShop also idexy us with
evidence on the explicit and computable nature awheof the
operators defined. Also note that we have decide#eep the
learning operator outside the scope of the firgil@mentation of
EventShop.

The system is available at [28]. We plan to reldhsesystem to
the open source community in near future.

6. EXPERIMENTAL VALIDATION

We have tested our approach for situation modediegvell as
detection across multiple applications. Our testmenarios
include Hurricane detection and mitigation, ideytif§ weather
patterns (e.g. Fall colors in New England), Infloerpatterns for
different political figures, Identifying demand hsgpots of
business products, Allergy risk and recommendati®iiy
outbreak, Wildfires, Global Warming Index, Quality Living,
and Flood mitigation. We select three of theseiapfibns for our
discussion here. We use them as representativepdssio give a
view of the diverse applications which can be stddising this
approach.

First example application is that of Epidemic Oetiks. This
example extends the discussion in section 4.4 ampletes the
lifecycle of a concept, from situation modeling i3 actual
implementation using EventShop. Second applicaisothat of
detecting large scale wild fires in California. Wimg on archived
satellite and social streams, this applicationvedlais to compare
the performance of the created situation recognitieodels with
the ground truth data. The third case study prestet results of
applying this approach to aid real end users dutirgy recent
floods in Thailand. This example illustrates tte-kycle of going
from situation models, to building situation-awaapplications
which can potentially help millions of users in Ireaorld
situations.

6.1 DetectingEpidemic Outbreaks

To validate if the models created following the EgHTh
described in section 4 are indeed explicit and agatge, we took
the model and configured it in EventShop. A videptare of the
process is available at [29]. In fact it turned ootbe a very
straightforward exercise as all the necessary imgjlthlocks and
their configuration parameters were already spettifin the
model. The ability to translate the models into gystem was
akin to translating a schema into database talvles all the fields
have been identified.

For the current purpose we used an average of sveaetlLI| for
the last month to be the historical average lewl.let the system
run for two weeks (Apr/30/12-May/13/12) with reahe Twitter
data feeds passing through the created filter,(drahkfully!) saw
no severe Epidemic outbreak risks. Sample Emagesthie
different data streams are shown in Figure 11 asanaple of the
configured detector’s result is shown in Figure 12.

Good

M data 92012 Google, INEGI - e o1

Figure 11: Emage for (a) Reports on Flu (brightedicates more
reports), (b) Historical average, (c) Population

Co Wexico e ot o2 elve

Figure 12: ‘Epidemic outbreak’ risk level

6.2 DetectingWildfires

Wildfires affect large portions of human ecologydasiten last
days and weeks while spreading over large spatiahdaries. It
was estimated that tropical fires around the wdgdtroyed about
15 X 10 km? of forests in the last decade [26]. Quantitative
information about the spatial and temporal distitiu of fires is
important for forest protection and in the managet forest
resources. It is also indispensable to such diseiplas ecology,
wildlife management and atmospheric chemistry.

Hence we decided to build a computational modefldoognizing
wildfires. For this we approached a domain expartrgsearch



scientist in Earth Science departmeatt our universit) and
requested her to volunteer for our case study.

Based on the process described in section 4.2 endxpertise il
the area of satellite based fire detection, shatedea situatio

model shown in Figure 13This model is loosely based on -
algorithm described in [17]t focuses on using satelliteata to
detect large wildfires Specifically it focuses on anomalies

inter-band variation between #Au and 1um wavelength
radiations to detect wildfires. This intband variation can onl
be observed in unclouded regions; which are idedtifby
analyzing the 12um band’s radiation levels.
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~Thresh ™ © @ e

Significant band
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E < AND
=310 s

Emage (12pum Emage (Mid IR Absolute value
band temp.) G variation
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; o Spatial Neighborhood
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Difference | [ Neighborhood
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temperature) temperatu value Mean value
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Figure 13 ‘Wildfire’ recognition model using satellite de

We configured this model into EventShop and detkediee
various wildfire situations across Califorri@ased on archives
satellite data streams. The dkehof satellite data was obtain
from NASA’s LAADS website Using this mod¢ we were able to
achieve ~74% precision (refer Figure Ef)detecting large fire
(>1000 ) over last 2 years in Californi@he ground truth use
for comparison was obtained frothhe website of the Californ
Department of Forestry and Fire Protection.
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Figure 14 ‘Wildfire’ recognition model using social de

We discussed with the expert adodilt another mod: (see Figure
14) using purely the social media (Fire related seajubries
made on Google from each locatiagta, and configured it on
EventShop. Note that the spatial granularity now is machrsel
(data is ®mailable at ‘metro area’ level), but it complemethe
satellite based detection especially in cases wfier@ccurred ir
clouded regions, or was brief but affected largeman
populations.

This model couldletect Fire situations in the correct t-frame
with ~70% accuracy.We consider this by itself to ban
interesting finding that indicates that spaoaporal nuggets
(millions of search query logg)an be combined to create -

same effective information as earlier limited tdefiies or th
proverbial ‘God’s view’[20].

Lastly we decided to combinéd two detection approaches ¢

createa unified situation detector which simply combirnies two

detectors (see Figure 15Jhe combined detector could det

more than 90% of the large fires in CaliforrA sample output is
shown in Figure 16 and a videaptur: of the filter configuration
and results observed is available2€][

California, | Fire detector
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Figure 15 ‘Wildfire’ recognition model using satellite + sl
data
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Figure 16 ‘Wildfire’ recognition model using satellite d¢
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Figure 17: Recognition performancat detecting ‘Wildfires’
across Californiaover last 2 yeal

6.3 Building situation aware applications:

Thailand Flood Risk Recommendation
After verifying the veracity of the approach at etging spati-
temporal situations from archives of data streelet's consider
its application at processing rdake data streams to dete
evolving situations to help people.

We applied EventShop for the goalsafggesting safe locations to
people who were trapped itisky situations inThailand flood.
The situation modébr defining risk levels is showin Figure 18
(a graduate student from Thailand whose family wascéfd by
the floods acted as our application expert in shusly).

The idea is to segmefiboding areas into three groups basec
flooding condition and sheltesufficiency. The model combines
the information about the water depth level vthe nearby shelter
availability to identify areas which have high levels of watat



no open shelters.HE shelter coverage has been defined bas:

a Gaussian coverage assumed for each shelterdicatie dat:

on the water level was made available by Googlead was

updated roughly every Bours. The locations of currently acti

shelter locations) wereonstantly being updated by tlat-the-

ground volunteers in Thailand. We could use thigs as a data
stream fromhttp://shelter.thaiflood.com/webservice/request .
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Figure 18 ‘Flood threat level’ detection moc
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Figure 19: Sample Emages showing (@lpod Water Leve
(brighter implies higher water level), and (8helter Coverag

We ran this application during Oct 20Dkc 2011. Sampl
Emages for the Flood Wateevels and the Shelter Coverage
shown in Figurel9. The central Bangkok city area was relatiy
well covered by shelters and also had low wateellévwcisions
because of walls builaround the city. As can be seen fror
sample result snapshot in Figure, 2@rge parts of count
however were under severe threat (shown in relderfigure).

We wanted to use the information about the threallto aid the
people in severe risk level areas. As a first stegeached out t
all people who had tweed with a Flood related term in the |
24 hours. A sample Emage capturing the relativédence of
such tweets is shown in Figure 21[a]. Using thespealizec
action taking capability of EventShop we configueedule whicl
could automatically send blatweets to all the users in severe |
areas advising them to move to the nearest opefies
immediately. The tweets also contained a pointeat teeb URL
containing physical address and other detailedrindtion (e.g.
current vacancy, phone numbeirections) about the nearest of
shelter. The twitter account used for sending batTweets wa
@SocLifeNetworks. Some of the tweets sent out amve in
Figure 21[b]. As can be seen some of our tweet® \-tweeted
by the receivers, thus indicatireg positive interest in receivir
and spreading such information.
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Figure 21: (a) Sample Emage showing activity areor tweets
related to Thai Flood, and (b):a®ple tweets sent out to re
users in high risk situation

6.4 Discussionand Future Outlook

We applied this framework to many applicas, but presented
here our experience with threEhe three applicationdiscussed
were to demonstratdifferent aspects of the framewoWe saw
the complete process of modeling and detectEpidemic
outbreaks In Wildfire detectionapplicatior, we saw how such
models can be revised and augmented to includesgiv@urce
until satisfactory level of reagnition performance is achieve
Lastly, in theThailand Flood RiskRecommendatic application
we sawhow such models can be used to build -of-a-kind
situation-aware applications whigtovide a complete loop frol
user generated data, to situationedéon in the cloud, to ales
sent back to the userBy combining different data streams
were able to detect risky situatioaad aidthe users affected in
real time.

Put together, the three applications also highltgktadaptability
and the expmesiveness of the modng approach and the
framework at handlinglifferent situations across different sp-
temporal bounds in diverse application dome

As mentioned, the video captures of testing theatitn model:
using EventShop are available @9]. Additionally [29] also
providesvideo captures for a Hurricane mitigation applica
(which directs people to nearest shelters based redigbed
hurricane path, population, and open Red Crosseshealat), and
an Asthma/Allergy recommendation plication (which detects
Allergy Risk level based on combination of polleount data
pollution level, and number of Twitter reports nmiening allergy
symptoms).

Referring back to Figure Inote that building tF applications
described required a situati driven perspective (andrelevant



computational framework). The concepts
intrinsically evolving, occurred in the real worldnd inherently
manifested themselves over heterogeneous multimetié&ams
coming from multiple sources. An ability to combidata over
both space (e.g. millions of search logs acrosatimes) and time
(e.g. historical average comparisons) was critfcal handling
these situations. Similarly sourcing the data frany relevant
media type (incl. Twitter, Census, Satellite, Geo§learch logs,
citizen-generated KML) was pivotal to modeling asulving the
problems in the real-world (and not the media $ilos

This paper shows the potential of Situation Redimmiin aiding
diverse human applications. Solving the variety isfues
associated with Situation Recognition shall requreoncerted
community effort on multiple aspects like multimbdata fusion,
scalable data analysis, data representation, mpobaessing
techniques, machine learning, and predictive madeliThis
provides newer challenges (and opportunities) Ffa tesearch
community to work towards tackling each of thesabgms from
a new situation-driven perspective. The rewardeaated with
Situation Recognition would clearly be unprecedeéni®/e shall
be able to maintain an evolving pulse of the waedpond to
various situations in real-time to save human laed resources.

7. CONCLUSIONS

This paper motivates and computationally groundsptfoblem of
combining heterogeneous dynamic big multimedia data
actionable situations. Specifically the paper fesusn describing
a generic approach for modeling and recognizingasiins.
Looking back at section 1, this paper countersetfivmdamental
problems in situation recognition. It provides amputational
definition to the notion of situation. It presemtsnethodology for
modeling situations based on generic conceptuatkbloand
describes a toolkit to rapidly implement, validaad refine these
situation models. Results obtained across diffeagyilications
highlight the potential of such an approach at catg diverse
situations. Further growth in the area of situatienognition is
imperative, and would allow for detection of an iy pulse of
the world by combining heterogeneous, spatiallyraweeal-time,
big multimedia data.
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